
Atari 8 Bit
Action! Library

Reference

Copyright © 2015-2022 All Rights Reserved  

Atari 8 Bit
Action! Library

Reference

Library Version 1.51 (2022.08.27)

Reference Revision D

Wade Ripkowski
inverseatascii@icloud.com

Copyright © 2022 All Rights Reserved

i

Table of Contents

Overview 1
Symbol Table Warning 2
Code Size 3
Management 3

Compilation 3

Requirements 4
Action! Runtime Library Dependency 4

Symbol Table 4

File Reference 5
DEFINES.ACT 5

DEFWIN.ACT 5

LIBDOS.ACT 5

LIBGADG.ACT 5

LIBIO.ACT 5

LIBMENU.ACT 5

LIBMISC.ACT 5

LIBSIO.ACT 6

LIBSTR.ACT 6

LIBWIN.ACT 6

API Reference 7
Window System (LIBWIN.ACT) 7
void PROC WBack(byte bN) 7

byte FUNC WClose(byte bN) 7

byte FUNC WClr(byte bN) 8

byte FUNC WDiv(byte bN, y, bD) 8

void PROC WInit() 9

byte FUNC WOpen(byte x, y, w, h, bT) 10

ii

byte FUNC WOrn(byte bN, bT, bL char pointer pS) 11

byte FUNC WPos(byte bN, x, y) 12

byte FUNC WPrint(byte bN, x, y, char pointer pS) 12

byte FUNC WPut(byte bN, x) 13

byte FUNC WStat(byte bN) 13

byte FUNC WTitle(byte bN card pointer pS) 14

Gadgets (LIBGADG.ACT) 15
void PROC GAlert(char pointer pS) 15

byte FUNC GButton(byte bN, x, y, bD, bS card pointer pA) 16

byte FUNC GCheck(byte bN, x, y, bI, bD) 17

byte FUNC GInput(byte bN, x, y, bT, bS char pointer pS) 18

void PROC GProg(byte bN, x, y, bS) 20

byte FUNC GRadio(byte bN, x, y, bD, bI, bS card pointer pA) 21

byte FUNC GSpin(byte bN, x, y, bL, bM, bP) 23

Menus (LIBMENU.ACT) 24
byte FUNC MenuV(byte bN, x, y, bI, bD, bS char pointer pS) 24

Input/Output (LIBIO.ACT) 26
card FUNC GetCD(byte bD) 26

int FUNC GetID(byte bD) 26

void PROC PutCD(byte bD card cE) 27

void PROC PutID(byte bD int iV) 27

void PROC EatByteD(byte bD card cB) 27

Serial Input/Output (LIBSIO.ACT) 28
void PROC SIOV(void) 28

String Manipulation (LIBSTR.ACT) 29
void PROC StrAI(char pointer pS) 29

void PROC StrIA(char pointer pS) 29

void PROC StrInv(char pointer pS byte bS) 29

void PROC StrPad(char pointer pS byte bC, bL) 30

void PROC SubStr(char array cB, cE byte bN, bS) 30

iii

void PROC StrTrim(char pointer pS) 30

DOS (LIBDOS.ACT) 31
byte FUNC IsSD() 31

void PROC SDx() 31

Miscellaneous (LIBMISC.ACT) 32
byte FUNC IKC2ATA(byte bN) 32

void PROC Wait(byte bN) 32

card FUNC WaitKC() 32

card FUNC WaitKCX(byte bI) 33

byte FUNC WaitYN(byte bE) 33

Usage Examples 34
Stub Programs 34
Stub Window 34

Stub Application Shell 36

Stub Input Form 39

Demo Program 43
Demonstration Application 43

iv

Overview
The library described herein is designed for use with the Action! programming language by Optimized
Systems Software (OSS) for the Atari 8 bit home computer.

The library was initially written in 2015 and included only the base windowing system. Over time it was
expanded to include general purpose routines, and gadgets (which are windowing system add-ons).

The major features offered by the library are:

• Window System

• The window management system allows the programmer to open and close windows with different styles.

To reduce complexity and overhead it is a LIFO (last in first out) design. It is intended for the programmer
to keep track of the call stack.

• Gadgets

• Gadgets are windowing system add-ons which are designed to provide simple things like alert boxes,

progress bars, and input controls.

• Menus

• Menus are a windowing system add-on which are designed to provide menu controls.

• Input/Output

• The input/output routines pick up where the Action! and Action! Toolkit routines leave off, such as reading

two bytes at a time. Also included are variables and a routine for setting up the SIO DCB and calling the
SIO vector.

• String Manipulation

• Functions to aid with string manipulation and character conversion.

• DOS Functions

• Functions for interacting with DOS.

• Miscellaneous

• Helper functions that don’t fall into any particular category, including waiting with and without keystrokes.

References in this documentation that refer to void are meant to mean not applicable, and not a data type.
Other data types are described as they are defined by Action!.

1

Symbol Table Warning
When using individual sections of the library, you typically will not need to do anything special other than
include the file(s) at the top of your applications source, and compile.

When using multiple sections of the library at once, you will need to ensure there is an adequate symbol table
size and symbol space available. When all of the library sections are included in one application, while the
symbol table may not be full, it will run out of space.

By default Action! reservers room for 255 symbol table entries. If you get an error 3, 4, or 61 when compiling
your program, it most likely means the symbol table space is insufficient. This can be overcome rather easily.
OSS made provisions in Action! to accommodate a larger symbol table.

To increase the symbol table size in Action!, you will need cold boot, then load BIGST.ACT. This will expand
the symbol table to a maximum of 510 entries. Before compiling, edit the file. Look for the line:

 bigST = 'm

Change the value from m to D. This value is the break point at which the expanded symbol table is broken
into two segments. The value used is subjective and may need to be different based on your application and
the variable names used - read the documentation and also the notes in BIGST.ACT itself. D works well for
my coding style which primarily uses Hungarian notation for variable names, and Uppercase function names.

Once changed, compile and run. Immediately following the run, you can try to compile your program. If you
get an error 61, you also need to increase the symbol table space. By default Action! reserves 2K (eight 256
byte pages) of memory for symbol table space.

To add symbol table space, immediately after running BIGST.ACT, enter the Action! monitor, and execute the
following, which will increase the symbol table space from the default 8 pages to 12 pages. Depending on
your program you may need even more:

SET $495=12

The value 12 works when compiling the stub programs included with this library. Not all stub programs need
the big symbol table. Those that do will have a comment at the top stating the need.

The big symbol table changes remain in effect until the Action! cartridge is rebooted.

For more in depth explanation on how Action! uses the symbol table, see the Action! runtime reference
section VII.

2

Code Size
Management
When using all of the components of the library, the code size of your application could start to become rather
large. If you find your program no longer fits in available memory or does not have enough memory for
variables after loading, you may need to optimize the compile environment.

To optimize the code size, copy all of the library files to your project directory. Subsequently modify your
applications source files to include the library files from this location rather than the original library source
location.

Now that your application is including the library from your application project location, you can proceed. You
will want to cross reference functions defined by the library with those your application uses, including
dependencies of the library functions (some library functions call others).

One you have identified all of the library functions (and their dependents) used by your application, you will
then remove modify the library files (in your project directory, NOT the original source). In these library files,
you will remove any functions that are not needed by your application, thus reducing the overall compiled
code size.

This can be extended to include the Action! runtime package if you so desire. Be careful removing functions
from the Action! runtime library file, because the compiler will backfill unresolved references to the ROM
cartridge counterparts, which will prevent the executable from running without the cartridge.

Compilation
When compiling a large application, you may run into problems that are related to source code size, not
object code size. If the editor has a large amount of source in it, Action! may not have enough room to
execute the compile. In this case you will want to compile it from disk with the editor contents empty.

If you want to create a stand alone executable, you will need to include the Action! runtime package in your
build. This is done by either including “SYS.ACT” or the individual Action! runtime libraries. SYS.ACT
includes all of the runtime library.

You may also need to set your applications memory load address and execution address (init vector). Safe
locations will vary by application and DOS, and may take some experimentation.

3

Requirements
Action! Runtime Library Dependency
This library depends upon some of the Action! runtime library functions. Library routines will list the runtime
function dependencies in the API reference which follows in this documentation.

Routines from the Action! Runtime Library that are needed:

GetD()
MoveBlock()
Poke()
Position()
Put()
PutD()
SCopy()
SCopyS()
SetBlock()
Zero()

Symbol Table
The symbols used by this library are as follows. Many of the names are re-used throughout the library, and
are kept to a short length to converse space.

bC
bCAP
bD
bE
bHLP
bI
bINV
bK
bL
bN
bP
bR
bRCH
bRCO
bS

bT
cB
cD
cE
cL
cS
iV
pA
pS
x
xp
y
yp

baW

cpWM
pWn
vCur

RTCLK
DAUX1
DAUX2
DBUF
DBYT
DCOMND
DDEVIC
DSTATS
DTIMLO
DUNIT  

4

File Reference

DEFINES.ACT
All definitions used throughout the library.

This should be included FIRST at the top of the main program file, and should be included in any program
that uses the library routines.

DEFWIN.ACT
Window type definitions and variables used by the window system portion of the library.

If the windowing system is used, this file should be included immediately after DEFINES.ACT, and BEFORE
LIBWIN.ACT.

LIBDOS.ACT
Collection of DOS related functions.

LIBGADG.ACT
Collection of gadgets (add-ons) for the window system.

When using these routines, LIBWIN.ACT MUST be included before.

LIBIO.ACT
Collection of Input and Output routines that augment the Action! and Action! Toolkit routines.

LIBMENU.ACT
Collection of menu routines which simplifies program navigation.

When using these routines, LIBWIN.ACT MUST be included before.

LIBMISC.ACT
Collection of routines that don’t fall into the other categories.

5

LIBSIO.ACT
OS SIO DCB variables and SIO vector wrapped as a procedure, to enable direct serial Input and Output per
the SIO bus.

LIBSTR.ACT
Collection of string manipulation routines that augment the Action! and Action! Toolkit routines.

LIBWIN.ACT
Collection of window routines that make up the text window system.

When using these routines, DEFINES.ACT, DEFWIN.ACT, and LIBSTR.ACT MUST be included before.

6

API Reference
Window System (LIBWIN.ACT)

void PROC WBack(byte bN)

Parameters:	 bN = Internal code of character

Returns:	 void

Requires:	 DEFWIN.ACT

Runtime - SetBlock()

Description
Sets the background “image” that covers the entire screen. This is a single character to repeat in every cell.

Using large footprint characters (a lot of pixels) can make the program elements like windows and menus
harder to see. It is best used with small footprint characters like the ‘.’. With a custom character set, this
function could be advantageously used.

byte FUNC WClose(byte bN)

Parameters:	 bN = Window handle number

Returns:	 byte = 0 for success

	 	 	 -or-

	 	 	 >100 on error (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
Runtime - MoveBlock(), Zero()

Description
Closes an open window specified by the handle bN.

If window is not open, no action is taken.

It is up to the programmer to close windows in the proper order - the last one opened should be the first one
closed. If an earlier window is closed before a more recent overlapping window, the screen contents will not
be reflected accurately when the latter is closed (it will show remnants of the earlier window).

7

byte FUNC WClr(byte bN)

Parameters:	 bN = Window handle number

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrInv()
Runtime - MoveBlock(), SetBlock()

Description
Clears the contents of the window referenced by window handle bN. Effectively clearing the screen of the
windows interior dimensions (excluding frame).

byte FUNC WDiv(byte bN, y, bD)

Parameters:	 bN = Window handle number

	 	 y = Window row to display divider

	 	 bD = On/Off flag

	 	 	 WON = On (show divider)

	 	 	 WOFF = Off (remove divider)

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
Runtime - MoveBlock(), SCopy()

Description
Draws a divider line in the window referenced by handle bN.

The divider is drawn on row y of the window.

The bD (display on/off) parameter is passed as WON, the bar will
be displayed. With WOFF, the bar will be removed which will
blank the contents on the window row and restore the window
frame.

Calling WDiv() with WOFF is also a quick way to clear one line of
a window. 

8

void PROC WInit()

Parameters:	 void
Returns:	 void
Requires:	 DEFINES.ACT

DEFWIN.ACT
Runtime - Poke(), Position(), Put(), Zero()

Description
Used to initialize the window management system. It should be called before any other windowing system
call.

In addition to defaulting all the windowing system variables, it will perform the following:

• Turn the cursor off (poke 752, 1)

• Set the left screen margin to 0 (poke 82, 0)

• Set the cursor position to the top left corner (0,0)

• Clear the screen

The library is built to handle 10 windows. You can alter this routine for more or less as your program requires.
Memory requirements will increase or decrease as the number is changed. Increasing the number may also
necessitate increasing the window system storage space by increasing the value of WBUFSZ in file
DEFWIN.ACT.

9

byte FUNC WOpen(byte x, y, w, h, bT)

Parameters:	 x = Column of screen for left edge of window

	 	 y = Row of screen for top edge of window

	 	 w = Width of window in columns

	 	 h = Height of window in rows

	 	 bT = Inverse video flag (optional)

	 	 	 WON = Inverse video

	 	 	 WOFF = Normal video (default)

Returns:	 byte = Window handle number

	 	 	 -or-

	 	 	 >100 on error

Requires:	 DEFINES.ACT

DEFWIN.ACT
Runtime - MoveBlock(), SetBlock()

Description
Opens a window on the screen with a single line border. The screen contents under the window are saved,
then restored when the window is closed.

Top left coordinate is specified by x and y. The width and height are specified with w and h. If the inverse
flag, bT, is set, the window is drawn and filled in inverse video.

10

byte FUNC WOrn(byte bN, bT, bL char pointer pS)

Parameters:	 bN = Window handle number

	 	 bT = Top or bottom of window designation

	 	 	 WPTOP = Top border

	 	 	 WPBOT = Bottom border

	 	 bL = Left, right, or center of window designation

	 	 	 WPCNT = Center

	 	 	 WPLFT = Left side

	 	 	 WPRGT = Right side

	 	 pS = Pointer to character string of title text

	 	 	 Maximum size is 36 characters!

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrAI(), StrInv()
Runtime - MoveBlock(), SCopy()

Description
Sets a window ornament to text string s with decorations on the window referenced by bN, on either the top
or bottom border as given by bT, and left or right side as given by bL.

If an ornament is to be set, the window itself must be large enough to accommodate it, along with any other
assigned ornaments. For a single ornament, a minimum window width should be the title length plus four
characters (two characters for the ornaments on either side of the tile, and two characters for the window
frame where the ornaments can’t be drawn). Because of this, the maximum length of a title is 36 characters.

If multiple ornaments are used on top or bottom at the same time, care must be taken to ensure the window
size is large enough, or the ornament size is small enough, to accommodate both ornaments.

11

byte FUNC WPos(byte bN, x, y)

Parameters:	 bN = Window handle number

	 	 x = Window column to move cursor to

	 	 y = Window row to move cursor to

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open

Requires:	 DEFINES.ACT

DEFWIN.ACT
Runtime - Position()

Description
Moves the window systems virtual cursor to the screen position of the specified x and y coordinates within
the window referenced by window handle bN.

byte FUNC WPrint(byte bN, x, y, char pointer pS)

Parameters:	 bN = Window handle number

	 	 x = Window column to print text

	 	 y = Window row to print text

	 	 pS = Pointer to character string of text to print

	 	 	 Maximum size is 38 characters!

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrAI(), StrInv()
Runtime - MoveBlock(), SCopy()

Description
Prints text string pointed to by pS at the virtual cursor position of x and y within the window referenced by
window handle bN.

A minimum window width should be the text length plus two characters (for the window frame). Because of
this, the maximum length of a text is 38 characters.

12

byte FUNC WPut(byte bN, x)

Parameters:	 bN = Window handle number

	 	 x = Character to put

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrAI()
Runtime - MoveBlock()

Description
Outputs the character specified by x at the window systems virtual cursor within the window referenced by
window handle bN.

Increments the window systems virtual cursor by one column.

If the window was created with the inverse flag set, the character will be inversed to match.

byte FUNC WStat(byte bN)

Parameters:	 bN = Window handle number

Returns:	 byte = Window status

	 	 	 WON = In use (window ON)

	 	 	 WOFF = Not in use (window OFF)

Requires:	 DEFWIN.ACT

Description
Returns the status of the window specified by the handle bN.

13

byte FUNC WTitle(byte bN card pointer pS)

*** D E P R E C A T E D ***

Parameters:	 bN = Window handle number

	 	 pS = Pointer to character string of title text

	 	 	 Maximum size is 36 characters!

Returns:	 byte = Success status

	 	 	 0 = Succesful

	 	 	 WENOPN = Window not open (default)

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrAI(), StrInv()
Runtime - MoveBlock(), SCopy()

Description
Sets the window title to s with ornaments for the window referenced by bN.

This is a deprecated function, replaced by WOrn().

Calling WTitle() is the same as calling WOrn() with WPTOP and WPLFT set for positioning.

14

Gadgets (LIBGADG.ACT)

void PROC GAlert(char pointer pS)

Parameters:	 pS = Pointer to character string to display

	 	 	 Maximum size is 38 characters!

Returns:	 void

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WOpen(), WTitle(), WPrint(), WClose()

LIBMISC.ACT - WaitKC()

Description
Displays a screen centered modal window with the title “Alert”
and the message text of the string pointed to by char pointer pS.
It will display an OK “button” beneath the text and wait for
keystroke, which will be consumed.

Calling GAlert will consume one window handle while it is open.

Because the window will have a frame, the maximum message
length is 38 characters.

15

byte FUNC GButton(byte bN, x, y, bD, bS card pointer pA)

Parameters:	 bN = Window handle number

	 	 x = Window column to start get

	 	 y = Window row

	 	 bD = Initial selected button

	 	 bS = Number of buttons in array

	 	 pA = Pointer to ragged array of button name strings

Returns:	 byte = Button number selected or XESC (escape exit) or XTAB (tab exit)

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WPrint()

LIBSTR.ACT - StrInv()
LIBMISC.ACT - WaitKC()
Runtime - SCopy()

Description
Displays a row of buttons and gets selection from user.

If the initial selection indicator (bD) is passed as GDISP, then the
buttons will be displayed and the function will exit (none will be
highlighted).

It is up to the programmer to define the button ornaments, if any.
For example: [OK]. In this example the [and] are the
ornaments enclosing the 4 character string space OK space. The
entire string will be inversed when selected, including the
ornaments.

Care must be taken on the total length of the button strings
contained in ragged array pointer pA. The total should be no more
than 38 for a window that is 40 wide.

Keys accepted are:

LEFT\+ = Move button selector left

RIGHT* = Move button selector right

UP\- = Move button selector left

DOWN\= = Move button selector right

ESCAPE	 	 = Exits without selection (returns XESC)

TAB	 	 	 = Exits without selection (returns XTAB)

ENTER		 	 = Accepts current selected button and exits (returns selected button #)

16

byte FUNC GCheck(byte bN, x, y, bI, bD)

Parameters:	 bN = Window handle number

	 	 x = Window column to start get

	 	 y = Window row

	 	 bI = Display Only indicator

	 	 	 GDISP (0) to display and exit

	 	 bD = Default initial value

	 	 	 GCON = Checked

	 	 	 GCOFF = Unchecked

Returns:	 byte = Checked status as GCON or GCOFF or XESC (escape exit) or XTAB (tab exit)

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WPrint()

LIBMISC.ACT - WaitKC()

Description
Displays a checkbox ([]) and gets selection from user.

Unlike many other input gadgets, the text for the option is not
included and should be displayed separately in the window using
WPrint() prior to calling GCheck().

When the checkbox is marked, an inverse video X will be
displayed, otherwise it will be an inverse space. When the
function exits, the set value will be displayed in normal video.
ENTER must be used to set (lock) the value to be returned,
otherwise the default value passed in is re-displayed.

If the display only indicator (bI) is passed as GDISP, then the
checkbox will be displayed and the function will exit. Display Only will respect default values and represent
them accordingly. This is useful for drawing the checkbox on a form before selection is to occur.

Keys accepted are:

ESCAPE	 	 = Exits without selection (returns XESC)

TAB	 	 	 = Exits without selection (returns XTAB)

SPACE 	 	 = Toggle value of checkbox (display only)

X/x	 	 	 = Acts just like SPACE

ENTER		 	 = Accepts (sets and locks to displayed current value) and exits

17

byte FUNC GInput(byte bN, x, y, bT, bS char pointer pS)

Parameters:	 bN = Window handle number

	 	 x = Window column to start get

	 	 y = Window row

	 	 bT = Allowed character type

	 	 	 GANY = Any non-cursor control character

	 	 	 GALNUM = Any Alpha-Numeric character (0-9, a-z, A-Z, <space>)

	 	 	 GALPHA = Alphabetic characters only (a-z, A-Z, <space>)

	 	 	 GNUMER = Numeric characters only (0-9, ., -)

	 	 bS = Display size for string (max 38)

	 	 pS = Pointer to text string to input/edit

Returns:	 byte = Success indicator

	 	 	 TRUE = String was modified

	 	 	 FALSE = String was not modified

Requires:	 DEFINES.ACT

DEFWIN.ACT
LIBSTR.ACT - StrInv()
LIBMISC.ACT - WaitKC(), IKC2ATA()

	 	 LIBWIN.ACT - WPrint()
Runtime - SCopy(), SCopyS(), SetBlock()

Description
Edits a large string in a smaller display window by scrolling
through the string and displaying only a portion at a time, much
like modern operating system input fields.

The edit area is opened in the window handle referenced by bN.
The edit area is placed at the x and y position in the window.
The maximum size of the edit area is specified by bS, and the
maximum should be considered to be 38 (given a window that is
40 characters wide).

The initial edit area contents will be a copy of the string passed
as pS.

If the input is exited using ESC, the string passed will be left in tact. If the input is exited using the ENTER key,
any edits made will be copied to the string passed via pointer pS. This means you can not pass a static text
string such as “Hello World”, it MUST be CHAR ARRAY or CHAR POINTER.

18

Keys accepted are:

LEFT\+ = Move cursor left

RIGHT* = Move cursor right

DEL = Delete character left of cursor (or 1st char if cursor is at position 1)

Control-DEL	 = Delete character at cursor (move remainder left 1 position, add space at end)

Shift-DEL = Delete entire string contents (moves cursor to position 1 of text string)

INSERT	 	 = Insert space at cursor (character at end of text string will be lost)

Control-Shift-S = Move cursor to beginning of string

Control-Shift-E = Move cursor to end of string

ESCAPE	 	 = Cancel edits and exit

ENTER		 	 = Accept edits and exit

19

void PROC GProg(byte bN, x, y, bS)

Parameters:	 bN = Window handle number

	 	 x = Window column to display bar at

	 	 y = Window row to display bar at

	 	 bS = Bar size (Percent complete)

Returns:	 void

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WPrint()

Runtime - SCopy()

Description
Displays a progress bar at the x and y position within the window
referenced by window handle bN. The percentage complete is
referenced by bS.

20

byte FUNC GRadio(byte bN, x, y, bD, bI, bS card pointer pA)

Parameters:	 bN = Window handle number

	 	 x = Window column to start get

	 	 y = Window row

	 	 bD = Direction of button placement

	 	 	 GHORZ = Horizontal (side by side)

	 	 	 GVERT = Vertical (stacked)

	 	 bI = Initial selected button

	 	 	 GDISP (0) to display and exit

	 	 bS = Number of buttons in array

	 	 pA = Pointer to ragged array of button name strings

Returns:	 byte = Button number selected or XESC (escape exit) or XTAB (tab exit)

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WPrint(), WPos(), WPut()

LIBSTR.ACT - StrInv()
LIBMISC.ACT - WaitKC()

Description
Displays a selection of radio buttons and gets a selection of one
from user.

Only one button from the defined group can be selected. When
there is a need for multiple option selection GCheck() should be
used instead.

The buttons will be arranged in the direction specified by bD.
Valid directions are GHORZ or horizontal (side by side), or GVERT
for vertical (stacked) alignment. Care should be taken to ensure
the window boundaries are large enough to accommodate the
buttons, especially when aligning horizontally. For horizontal
buttons, it is only reasonably to expect 3 or 4 buttons to fit in the
38 columns available inside a window frame. Each horizontal button is separated by 2 spaces. For this
reason, it is recommended to use vertical alignment (GVERT) to stack the buttons for more than 3 buttons.

If the initial selection indicator (bI) is passed as GDISP, then the buttons will be displayed and the function
will exit (none will be highlighted). This is useful for drawing the buttons on a form before selection is to
occur.

21

Keys accepted are:

LEFT\+ = Move button selector left

RIGHT* = Move button selector right

UP\- = Move button selector left

DOWN\= = Move button selector right

ESCAPE	 	 = Exits without selection (returns XESC)

TAB	 	 	 = Exits without selection (returns XTAB)

SPACE 	 	 = Set currently selected button as choice

ENTER		 	 = Accepts current selected button and exits (returns selected button #)

22

byte FUNC GSpin(byte bN, x, y, bL, bM, bP)

Parameters:	 bN = Window handle number

	 	 x = Window column to display value at

	 	 y = Window row to display value at

	 	 bL = Lowest allowed value

	 	 bM = Maximum allowed value

	 	 bP = Present (current) value

Returns:	 byte = value selected

Requires:	 DEFINES.ACT

DEFWIN.ACT
	 	 LIBWIN.ACT - WPrint()

LIBSTR.ACT - StrPad(), StrInv()
LIBMISC.ACT - WaitKC()
Runtime - StrB()

Description
Displays value bP, considered the starting/default value, and
allows value change via spinner controls. The lowest value is
limited to bL. The maximum value is limited to bM.

Any byte value is allowed for the limits and default value. The
upper limit can be up to 252. This is because the input gadgets
use the the 253, 254, and 255 as specific return values that
indicate how the gadget was exited. The spinner gadget is an
exception in that is a hybrid. It will return those values, and it
returns the selected value. Realistically, the foreseen use case is
from 0 to 100.

Keys accepted are:

LEFT\+ = Decrease value

RIGHT* = Increase value

UP\- = Increase value

DOWN\= = Decrease value

ESCAPE	 	 = Exits without setting value (returns XESC)

TAB	 	 	 = Exits without setting value (returns XTAB)

ENTER		 	 = Accepts current value and exits (returns value)

23

Menus (LIBMENU.ACT)

byte FUNC MenuV(byte bN, x, y, bI, bD, bS char pointer pS)

Parameters:	 bN = Window handle number

	 	 x = Window column to display menu at

	 	 y = Window row to display menu at

	 	 bI = Inverse selection on exit flag

	 	 	 WON = Leave menu selection in inverse video

	 	 	 WOFF = Return menu selection to normal video

	 	 bD = Start item selection number

	 	 bS = Menu item width

	 	 pS = String containing menu items

Returns:	 byte = Number of item chosen

	 	 	 XESC = User ESCaped from menu (no item chosen)

	 	 	 XTAB = User TABbed from menu (no item chosen)

Requires:	 DEFINES.ACT
DEFWIN.ACT

	 	 LIBWIN.ACT - WPrint()
LIBMISC.ACT - WaitKC()
Runtime - SCopyS()

Description
Displays a list of menu items at the x and y coordinates within
the window referenced by window handle bN.

The currently selected menu item will be highlighted (displayed in
inverse video), while the remaining items will be in normal video.

The menu will have the following navigation key controls:

UP/-	 	 = Move cursor (selection) up

DOWN/=	 = Move cursor (selection) down

LEFT/+	 = Move cursor (selection) up

RIGHT/*	 = Move cursor (selection) down

ENTER		 = Accept selected item

ESCAPE 	 = Abandon selection and return

TAB 	 	 = Abandon selection and return

The initially selected item will be the one referenced by bD.

If the selector scrolls past the bottom it will be returned to the top. Likewise if the selector scrolls past the top
it will set to the bottom.

If the inverse on exit parameter (bI) is set to WON, the currently highlighted (selected) menu item will remain in
inverse video at exit. This is useful if you have sub-menus and want to see the “breadcrumbs” of previous
selections.

24

If the inverse on exit parameter (bI) is set to WOFF, the currently highlighted (selected) menu item will be re-
displayed in normal video at exit. This is useful for generating input forms and using MenuV() as a field
selector.

The number of the item selected will be returned once a selection is accepted.

If ESCAPE is used to exit the menu, it will return 0 (XESC).

If TAB is used to exit the menu, it will return 99 (XTAB).

Notes
- Version 1.2 introduced a breaking change with two new parameters bI and bD. Parameter order has also
changed. Any programs written for previous library versions that use MenuV() will need to be updated
before successful compilation and run will occur.

25

Input/Output (LIBIO.ACT)

card FUNC GetCD(byte bD)

Parameters:	 bD = Device handle number

Returns:	 card = Value of card read from device

Requires:	 Runtime - GetD()

Description
Gets a card value (two bytes) from the device referenced by handle bD. Bytes are read in little endian format
(LSB followed by MSB).

The value returned is computed with the following formula:

card = (MSB * 256) + LSB

int FUNC GetID(byte bD)

Parameters:	 bD = Device handle number

Returns:	 int = Value (positive or negative) of integer read from device

Requires:	 LIBIO.ACT - GetCD()

Description
Gets an integer value (two bytes) from the device referenced by handle bD. Bytes are read in little endian
format (LSB followed by MSB).

The value returned is computed with the following formula:

card = (MSB * 256) + LSB

It is then checked to see if it is negative, and appropriately assigned if so.

26

void PROC PutCD(byte bD card cE)

Parameters:	 bD = Device handle number

	 	 cE = Card value to put

Returns:	 void

Requires:	 Runtime - PutD()

Description
Puts a card value (two bytes) referenced by cE on the device referenced by handle bD. Bytes are written in
little endian format (LSB followed by MSB).

void PROC PutID(byte bD int iV)

Parameters:	 bD = Device handle number

	 	 iV = Integer value to put

Returns:	 void

Requires:	 LIBIO.ACT - PutCD()

Description
Puts an integer value (two bytes) referenced by iV on the device referenced by handle bD. Bytes are written
in little endian format (LSB followed by MSB).

void PROC EatByteD(byte bD card cB)

Parameters:	 bD = Device handle number

	 	 cB = Number of bytes to eat

Returns:	 void

Requires:	 n/a

Description
Reads cB number of bytes from the device referenced by handle bD. Bytes are discarded after being read.

27

Serial Input/Output (LIBSIO.ACT)

void PROC SIOV(void)

Parameters:	 n/a

Returns:	 n/a

Requires:	 n/a

Description
Call the SIO vector of the operating system at location $E459.

It is assumed the SIO DCB (device control block) has been appropriately defined with values before calling
SIOV().

The SIO DCB variables are defined as part of this library. Those variables are predefined to point to OS
memory locations as defined below:

BYTE DDEVIC = $300 - Device bus serial ID
 DUNIT = $301 - Device unit number

 DCOMND = $302 - Device operation (command) number

 DSTATS = $303 - Device status (device dependent)

 DTIMLO = $306 - Device timeout in seconds (default 31 units or 30 seconds)

 DAUX1 = $30A - Auxillary byte 1 (device dependent)

 DAUX2 = $30B - Auxillary byte 2 (device dependent)

CARD DBUF = $304 - Data buffer address (2 bytes as LSB/MSB)

 DBYT = $308 - Data transfer size (2 bytes as LSB/MSB)

To define a value into these locations, you can simply set the variable to the value. Example for setting up
APETime call:

; APETime=Device 69 ($45), Unit 1
; Time command=147 ($93)
; Get 6 byte and store in byte array address of bA
; Timeout just over 15s
DDEVIC=69
DUNIT=1
DCOMND=147
DSTATS=64
DTIMLO=15
DBUF=bA
DBYT=6

28

String Manipulation (LIBSTR.ACT)

void PROC StrAI(char pointer pS)

Parameters:	 pS = Pointer to text string

Returns:	 void

Requires:	 n/a

Description
Converts string referenced by pS from the ATASCII code representation to the internal code
representation.

This is generally useful for putting characters or copying text strings directly to screen memory.

void PROC StrIA(char pointer pS)

Parameters:	 pS = Pointer to text string

Returns:	 void

Requires:	 n/a

Description
Converts string referenced by pS from the internal code representation to the ATASCII code
representation.

This is the opposite of StrAI().

void PROC StrInv(char pointer pS byte bS)

Parameters:	 pS = Pointer to text string

	 	 bS = Number of bytes to inverse

Returns:	 void

Requires:	 n/a

Description
Inverses (inverse video) the string referenced by pS up to size bS bytes in length.

29

void PROC StrPad(char pointer pS byte bC, bL)

Parameters:	 pS = Pointer to text string

	 	 bC = Character to pad string with

	 	 bL = Length to pad the string to

Returns:	 void

Requires:	 Runtime - SAssign(), SCopy(), SetBlock()

Description
Pads the string referenced by pS with character bC up to size bL bytes in length. The maximum length is 10
characters.

void PROC SubStr(char array cB, cE byte bN, bS)

Parameters:	 cB = Text string to take substring from (source)

	 	 cE = Text string to place substring into (destination)

	 	 bN = Starting position of substring in source

	 	 bS = Number of characters to copy into substr

Returns:	 void

Requires:	 n/a

Description
Copies a substring of bS characters from the string referenced by cB starting at position bN, and places result
in the character string referenced by cE.

void PROC StrTrim(char pointer pS)

Parameters:	 pS = Pointer to text string

Returns:	 void

Requires:	 n/a

Description
Removes trailing spaces from the string referenced by pS.

30

DOS (LIBDOS.ACT)

byte FUNC IsSD()

Parameters:	 void

Returns:	 byte 	 =	 1 = SpartaDOS

	 	 	 	 0 = Non-SpartaDOS

Requires:	 n/a

Description
Determines if DOS is SpartaDOS.

void PROC SDx()

Parameters:	 void

Returns:	 void

Requires: 	 n/a

Description
Exits program by jumping to DOS through DOSVEC ($000A).

31

Miscellaneous (LIBMISC.ACT)

byte FUNC IKC2ATA(byte bN)

Parameters:	 bN = Internal key code

Returns:	 byte = ATASCII character code

	 	 	 Or unconverted internal code (see Description)

	 	 	 Or KNOMAP (199) for internal codes with no character mapping (see Description)

Requires:	 DEFINES.ACT

Description
Converts internal key code to ATASCII character code.

Performs conversion for all internal key codes with value less than 192. If the internal code passed in is
greater than 191, it is returned unmodified. If the internal code passed in is greater than 127 and does not
have a character mapping, KNOMAP (199) is returned. Key code 199 is not bound to any keystroke
combination.

void PROC Wait(byte bN)

Parameters:	 bN = Number of seconds to wait

Returns:	 void

Description
Waits bN number of seconds.

card FUNC WaitKC()

Parameters:	 void

Returns:	 card = key code value of key pressed

Requires:	 DEFINES.ACT

Description
Waits for any keystroke or console key press. The function does not process functions for transient keys like
Inverse or Caps, though it will return the key stroke value.

The keypress is consumed before returning.

32

card FUNC WaitKCX(byte bI)

Parameters:	 bI = Flag to execute inverse function or not

	 	 	 1 = Yes

	 	 	 0 = No

Returns:	 card = key code value of key pressed

Requires:	 DEFINES.ACT

Description
Waits for any keystroke, function key, or console key press. Function keys include HELP, and F1 through F4.
This function will process transient keys Caps and Inverse as well as returning the key stroke value. This
means caps-lock will be toggled on and off as the key is pressed.

The transient inverse keystroke will be toggled only if bI is passed as 1.

The keypress is consumed before returning.

This is an expanded version of WaitKC intended for use on XL/XE computers.

byte FUNC WaitYN(byte bE)

Parameters:	 bE = Flag for display of ? prompt

	 	 	 1 = Display ?

	 	 	 0 = Do not display ?

Returns:	 byte = 1 = Y or y pressed

	 	 	 0 = N or n pressed

Requires:	 DEFINES.ACT

Runtime - Put()

Description
Waits for a Y or N keystroke. Upper and lower case letters are accepted. Will optionally display a ‘?’
character at the current virtual window system cursor location if bE is set to 1.

The keypress is consumed before returning. 

33

Usage Examples
Stub Programs

Stub Window
This demonstrates the very basics of the window system. It shows how to include the library and open a
window.

File: STUBWIN.ACT

; Program: STUBWIN.ACT
; Author.: Wade Ripkowski
; Date...: 2016.07
; Desc...: Stub Window Program
; License: Creative Commons
; Attribution-NonCommercial-
; NoDerivatives
; 4.0 International

; Include library
INCLUDE "D1:DEFINES.ACT"
INCLUDE "D1:DEFWIN.ACT"
INCLUDE "D1:LIBSTR.ACT"
INCLUDE "D1:LIBWIN.ACT"
INCLUDE "D1:LIBMISC.ACT"

; Start
MODULE

PROC Main()
; Window handles
BYTE bW1

; Init Window System

34

WInit()

; Open window 1
bW1=WOpen(8,5,24,9,WOFF)
WOrn(bW1,WPTOP,WPLFT,"Stub")
WPrint(bW1,WPCNT,2,"InverseÁÔÁÓÃÉÉ")
WPrint(bW1,WPCNT,4,"Unfinished Bitness")
WPrint(bW1,WPCNT,6," Ïë ")

; Wait for a keystroke or console key
WaitKC()

; Close window 1
WClose(bW1)

RETURN

  

35

Stub Application Shell
This demonstrates a shell application using the window system. It shows how to include the library and build
the foundation of a larger application.

File: STUBAPP.ACT

; Program: STUBAPP.ACT
; Author.: Wade Ripkowski
; Date...: 2021.01
; Desc...: Stub Application
; License: Creative Commons
; Attribution-NonCommercial-
; NoDerivatives
; 4.0 International

; Include library
INCLUDE "D1:DEFINES.ACT"
INCLUDE "D1:DEFWIN.ACT"
INCLUDE "D1:LIBSTR.ACT"
INCLUDE "D1:LIBWIN.ACT"
INCLUDE "D1:LIBMISC.ACT"
INCLUDE "D1:LIBGADG.ACT"
INCLUDE "D1:LIBMENU.ACT"

; Start
MODULE

; ------------------------------
; Proc: About()
; Desc: About Dialog
; ------------------------------
PROC About()
BYTE bW1

; Show window
bW1=WOpen(1,6,38,14,WOFF)
WOrn(bW1,WPTOP,WPLFT,"About")
WPrint(bW1,WPCNT,1,"Application")
WPrint(bW1,WPCNT,2,"Version 1.00")

36

WPrint(bW1,WPCNT,3,"(C) 2021 Wade Ripkowski")
WPrint(bW1,WPCNT,5,"Stub Application for building")
WPrint(bW1,WPCNT,6,"Action! apps with the library.")
WPrint(bW1,2,8, "V1-2021-Atari8: Action!")
WPrint(bW1,WPCNT,12," Ïë ")

; Wait for key
WaitKC()

; Close window
WClose(bW1)

RETURN

; ------------------------------
; Proc: SubMenu3()
; Desc: Sub menu 3 routine
; ------------------------------
PROC SubMenu3()
BYTE bW1,bCh
CHAR ARRAY cM(37)

; Open window
bW1=WOpen(16,10,14,5,WOFF)
WOrn(bW1,WPTOP,WPCNT,"Sub-Menu 3")

; Build menu
SCopy(cM," Sub-Item 1 Sub-Item 2 Sub-Item 3 ")

; Do until exit
DO
 ; Display menu and get choice
 bCh=MenuV(bW1,1,1,WOFF,1,12,cM)

 ; Process choice
 if bCh=XESC then
 exit

 elseif bCh=1 then
 GAlert(" Sub-Item 1 selected. ")

 elseif bCh=2 then
 GAlert(" Sub-Item 2 selected. ")

 elseif bCh=3 then
 GAlert(" Sub-Item 3 selected. ")
 fi
OD

; Close window
WClose(bW1)

RETURN

; ------------------------------
; Proc: Main()
; Desc: Main routine
; ------------------------------
PROC Main()
BYTE bW1,bW2,bCh
CHAR ARRAY cM(61)

; Init Window System
WInit()

; Set Background
WBack(14)

; Open header window
bW1=WOpen(0,0,40,3,WON)
WPrint(bW1,WPCNT,1,"A P P L I C A T I O N")

; Open menu window
bW2=WOpen(13,7,12,9,WOFF)
WOrn(bW2,WPTOP,WPCNT,"Menu")

; Build menu
SCopy(cM,
" Sub-Menu 1 Sub-Menu 2 Sub-Menu 3 About Exit ")

; Do until exit
DO
 ; Display menu and get choice

37

 bCh=MenuV(bW2,1,2,WOFF,1,12,cM)

 ; Process choice
 if bCh=1 then
 GAlert(" Sub-Menu 1 selected. ")

 elseif bCh=2 then
 GAlert(" Sub-Menu 2 selected. ")

 elseif bCh=3 then
 SubMenu3()

 elseif bCh=4 then
 About()

 elseif bCh=XESC or bCh=5 then
 exit
 fi
OD

; Close windows
WClose(bW2)
WClose(bW1)

RETURN

38

Stub Input Form
This demonstrates an input form using the window system, menu, and gadgets. It shows how to include the
library and usage of the input gadgets.

File: STUBFORM.ACT

; Program: STUBFORM.ACT
; Author.: Wade Ripkowski
; Date...: 2021.01
; Desc...: Form Input Test
; Notes..: !!! Before Compiling !!!
; MUST RUN BIGST.ACT 1st!
; With: bigST='D
; Then: SET $495=12

; Include library
INCLUDE "D1:DEFINES.ACT"
INCLUDE "D1:DEFWIN.ACT"
INCLUDE "D1:LIBSTR.ACT"
INCLUDE "D1:LIBMISC.ACT"
INCLUDE "D1:LIBWIN.ACT"
INCLUDE "D1:LIBGADG.ACT"
INCLUDE "D1:LIBMENU.ACT"

; Start
MODULE

; -----------------------------------
; Func..: Form()
; Descr.: Demonstation input form
; using multiple gadgets.
; -----------------------------------
BYTE FUNC Form()
BYTE bR=[FALSE]
BYTE bW1,bM,bA,bB,bC,bD
BYTE bRA,bRB,bRAp,bRBp
BYTE bCha,bChb,bChc,bChap,bChbp,bChcp
CHAR ARRAY cA(41),cB(41),cC(41),cD(41)
CARD ARRAY aB(2)
CARD ARRAY rA(3),rB(3)

; Setup buttons
; Element 0 will be seletion 1
aB(0)="[Ok]"
aB(1)="[Cancel]"

; Set radio buttons and defaults
rA(0)="One"
rA(1)="Two"
rA(2)="Three"
rB(0)="Choice A"
rB(1)="Choice B"
rB(2)="Choice C"
bRA=1
bRB=1
bRAp=bRA
bRBp=bRB

; Prep strings
SCopy(cA,"-100.00 ")
SCopy(cB,"This string has something to edit in it!")
SCopy(cC," ")
SCopy(cD,"Any String! ")

; Set checkbox defaults for previous
bChap=GCOFF
bChbp=GCON
bChcp=GCOFF

39

; Open window & draw contents
bW1=WOpen(2,2,36,17,WOFF)
WOrn(bW1,WPTOP,WPLFT,"Input Form")
WOrn(bW1,WPTOP,WPRGT,"Edit")
WOrn(bW1,WPBOT,WPLFT,cF)

WPrint(bW1,1,1,"Data Fields")
WPrint(bW1,2,2,"Numer:")
WPrint(bW1,2,3,"Alpha:")
WPrint(bW1,2,4,"AlNum:")
WPrint(bW1,2,5,"Any..:")

WPrint(bW1,1,7,"Radio Buttons (horiz)")
GRadio(bW1,2,8,GHORZ,GDISP,bRAp,3,rA)

WPrint(bW1,1,10,"Radio Buttons")
GRadio(bW1,2,11,GVERT,GDISP,bRBp,3,rB)

WPrint(bW1,20,10,"Check Boxes")
WPrint(bW1,25,11,"Milk")
WPrint(bW1,25,12,"Bread")
WPrint(bW1,25,13,"Butter")
GCheck(bW1,21,11,GDISP,bChap)
GCheck(bW1,21,12,GDISP,bChbp)
GCheck(bW1,21,13,GDISP,bChcp)

GButton(bW1,21,15,GDISP,2,aB)

; Display fields as is
WPrint(bW1,8,2,cA)
WPrint(bW1,8,3,cB)
WPrint(bW1,8,4,cC)
WPrint(bW1,8,5,cD)

; Loop until form accepted or cancelled
DO
 ; Set initial menu selection
 bM=1

 ; Loop until user ESCapes or TABs out
 DO
 ; Cycle through fields
 bM=MenuV(bW1,2,2,WOFF,bM,5,"NumerAlphaAlNumAny..")

 ; Edit the chosen field
 if bM=1 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bA=GInput(bW1,8,2,GNUMER,27,cA)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=2 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bB=GInput(bW1,8,3,GALPHA,27,cB)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=3 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bC=GInput(bW1,8,4,GALNUM,27,cC)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=4 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bD=GInput(bW1,8,5,GANY,27,cD)
 WOrn(bW1,WPBOT,WPLFT,cF)
 fi
 UNTIL bM=XESC or bM=XTAB
 OD

 ; Display radio buttons - horizontal
 WOrn(bW1,WPBOT,WPLFT,cR)
 bRA=GRadio(bW1,2,8,GHORZ,GEDIT,bRAp,3,rA)
 if bRA#XESC and bRA#XTAB then
 bRAp=bRA
 fi
 GRadio(bW1,2,8,GHORZ,GDISP,bRAp,3,rA)

 ; Display radio buttons - veritcal
 bRB=GRadio(bW1,2,11,GVERT,GEDIT,bRBp,3,rB)
 if bRB#XESC and bRB#XTAB then
 bRBp=bRB
 fi
 GRadio(bW1,2,11,GVERT,GDISP,bRBp,3,rB)
 WOrn(bW1,WPBOT,WPLFT,cF)

 ; Check boxes, set footer

40

 WOrn(bW1,WPBOT,WPLFT,cX)

 ; Stay on this check until ESC, TAB, or SET
 DO
 ; Display button and get choice
 bCha=GCheck(bW1,21,11,GEDIT,bChap)

 ; If ESC or TAB, exit loop
 if bCha=XESC or bCha=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChap=bCha
 fi
 OD

 ; Stay on this check until ESC, TAB, or SET
 DO
 bChb=GCheck(bW1,21,12,GEDIT,bChbp)

 ; If ESC or TAB, exit loop
 if bChb=XESC or bChb=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChbp=bChb
 fi
 OD

 ; Stay on this check until ESC, TAB, or SET
 DO
 bChc=GCheck(bW1,21,13,GEDIT,bChcp)

 ; If ESC or TAB, exit loop
 if bChc=XESC or bChc=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChcp=bChc
 fi
 OD

 ; Restore footer
 WOrn(bW1,WPBOT,WPLFT,cF)

 ; If ESC out of fields, dont do buttons
 if bM#XESC then
 ; Prompt for form acceptance
 bM=GButton(bW1,21,15,1,2,aB)

 ; Redraw buttons
 GButton(bW1,21,15,GDISP,2,aB)
 fi
UNTIL bM#XTAB
OD

; Do something with data if accepted, set true exit
if bM=1 then
 bR=TRUE
 GAlert("Doing something with entered data...")
fi

; Close window
WClose(bW1)

RETURN(bR)

; -----------------------------------
; Main routine
; -----------------------------------
PROC Main()
BYTE bW1,bR

; Init Window System
WInit()

; Call form
bR=Form()

; Check form return status
if bR=TRUE then
 GAlert("Returned TRUE (edited)")
else
 GAlert("Returned FALSE (escaped)")

41

fi

RETURN

42

Demo Program

Demonstration Application
This demonstrates a fully functioning application using the window system, and several gadgets. It shows
how to include the library and build the foundation of a larger application.

File: DEMOAPP.ACT

; Program: APPDEMO.ACT
; Author.: Wade Ripkowski
; Date...: 2021.01
; Desc...: Demo Application
; License: Creative Commons
; Attribution-NonCommercial-
; NoDerivatives
; 4.0 International
; Notes..: MUST run BIGST.ACT 1st w/
; bigST='D
; Then: SET $495=12

; Include library
INCLUDE "D1:DEFINES.ACT"
INCLUDE "D1:DEFWIN.ACT"
INCLUDE "D1:LIBSTR.ACT"
INCLUDE "D1:LIBWIN.ACT"
INCLUDE "D1:LIBMISC.ACT"
INCLUDE "D1:LIBGADG.ACT"
INCLUDE "D1:LIBMENU.ACT"

; Start
MODULE

; -----------------------------------
; Func..: FormInput()
; Desc..: Demo use of input gadgets
; Return: TRUE if accepted, or FALSE
; -----------------------------------

43

BYTE FUNC FormInput()
BYTE bR=[FALSE]
BYTE bW1,bM,bA,bB,bC,bD
BYTE bRA,bRB,bRAp,bRBp
BYTE bCha,bChb,bChc,bChap,bChbp,bChcp
CHAR ARRAY cA(41),cB(41),cC(41),cD(41)
CARD ARRAY aB(2)
CARD ARRAY rA(3),rB(3)

; Setup buttons
; Element 0 will be seletion 1
aB(0)="[Ok]"
aB(1)="[Cancel]"

; Set radio buttons and defaults
rA(0)="One"
rA(1)="Two"
rA(2)="Three"
rB(0)="Choice A"
rB(1)="Choice B"
rB(2)="Choice C"
bRA=1
bRB=1
bRAp=bRA
bRBp=bRB

; Prep strings
SCopy(cA,"-100.00 ")
SCopy(cB,"This string has something to edit in it!")
SCopy(cC," ")
SCopy(cD,"Any String! ")

; Set checkbox defaults for previous
bChap=GCOFF
bChbp=GCON
bChcp=GCOFF

; Open window & draw contents
bW1=WOpen(2,4,36,17,WOFF)
WOrn(bW1,WPTOP,WPLFT,"Input Form")
WOrn(bW1,WPTOP,WPRGT,"Edit")
WOrn(bW1,WPBOT,WPLFT,cF)

WPrint(bW1,1,1,"Data Fields")
WPrint(bW1,2,2,"Numer:")
WPrint(bW1,2,3,"Alpha:")
WPrint(bW1,2,4,"AlNum:")
WPrint(bW1,2,5,"Any..:")

WPrint(bW1,1,7,"Radio Buttons (horiz)")
GRadio(bW1,2,8,GHORZ,GDISP,bRAp,3,rA)

WPrint(bW1,1,10,"Radio Buttons")
GRadio(bW1,2,11,GVERT,GDISP,bRBp,3,rB)

WPrint(bW1,20,10,"Check Boxes")
WPrint(bW1,25,11,"Milk")
WPrint(bW1,25,12,"Bread")
WPrint(bW1,25,13,"Butter")
GCheck(bW1,21,11,GDISP,bChap)
GCheck(bW1,21,12,GDISP,bChbp)
GCheck(bW1,21,13,GDISP,bChcp)

GButton(bW1,21,15,GDISP,2,aB)

; Display fields as is
WPrint(bW1,8,2,cA)
WPrint(bW1,8,3,cB)
WPrint(bW1,8,4,cC)
WPrint(bW1,8,5,cD)

; Loop until form accepted or cancelled
DO
 ; Set initial menu selection
 bM=1

44

 ; Loop until user ESCapes or TABs out
 DO
 ; Cycle through fields
 bM=MenuV(bW1,2,2,WOFF,bM,5,"NumerAlphaAlNumAny..")

 ; Edit the chosen field
 if bM=1 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bA=GInput(bW1,8,2,GNUMER,27,cA)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=2 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bB=GInput(bW1,8,3,GALPHA,27,cB)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=3 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bC=GInput(bW1,8,4,GALNUM,27,cC)
 WOrn(bW1,WPBOT,WPLFT,cF)

 elseif bM=4 then
 WOrn(bW1,WPBOT,WPLFT,cI)
 bD=GInput(bW1,8,5,GANY,27,cD)
 WOrn(bW1,WPBOT,WPLFT,cF)
 fi
 UNTIL bM=XESC or bM=XTAB
 OD

 ; Display radio buttons - horizontal
 WOrn(bW1,WPBOT,WPLFT,cR)
 bRA=GRadio(bW1,2,8,GHORZ,GEDIT,bRAp,3,rA)
 if bRA#XESC and bRA#XTAB then
 bRAp=bRA
 fi
 GRadio(bW1,2,8,GHORZ,GDISP,bRAp,3,rA)

 ; Display radio buttons - veritcal
 bRB=GRadio(bW1,2,11,GVERT,GEDIT,bRBp,3,rB)
 if bRB#XESC and bRB#XTAB then
 bRBp=bRB
 fi
 GRadio(bW1,2,11,GVERT,GDISP,bRBp,3,rB)
 WOrn(bW1,WPBOT,WPLFT,cF)

 ; Check boxes, set footer
 WOrn(bW1,WPBOT,WPLFT,cX)

 ; Stay on this check until ESC, TAB, or SET
 DO
 ; Display button and get choice
 bCha=GCheck(bW1,21,11,GEDIT,bChap)

 ; If ESC or TAB, exit loop
 if bCha=XESC or bCha=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChap=bCha
 fi
 OD

 ; Stay on this check until ESC, TAB, or SET
 DO
 bChb=GCheck(bW1,21,12,GEDIT,bChbp)

 ; If ESC or TAB, exit loop
 if bChb=XESC or bChb=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChbp=bChb
 fi
 OD

 ; Stay on this check until ESC, TAB, or SET
 DO
 bChc=GCheck(bW1,21,13,GEDIT,bChcp)

 ; If ESC or TAB, exit loop
 if bChc=XESC or bChc=XTAB then
 exit
 else
 ; Else, assign return to previous
 bChcp=bChc

45

 fi
 OD

 ; Restore footer
 WOrn(bW1,WPBOT,WPLFT,cF)

 ; If ESC out of fields, dont do buttons
 if bM#XESC then
 ; Prompt for form acceptance
 bM=GButton(bW1,21,15,1,2,aB)

 ; Redraw buttons
 GButton(bW1,21,15,GDISP,2,aB)
 fi
UNTIL bM#XTAB
OD

; Do something with data if accepted, set true exit
if bM=1 then
 bR=TRUE
 GAlert("Doing something with entered data...")
fi

; Close window
WClose(bW1)

RETURN(bR)

; -----------------------------------
; Proc..: ProgTest()
; Descr.: Demos window status and
; progress bar.
; -----------------------------------
PROC ProgTest()
BYTE bW1,bW2,bL,bS
INT iV

; Open status window
bW1=WOpen(9,2,20,14,WOFF)
WOrn(bW1,WPTOP,WPLFT,"Status")
WPrint(bW1,1,1,"Window Status")
WPrint(bW1,1,2,"------ ------")

; Open progress bar window
bW2=WOpen(7,18,24,4,WOFF)
WPrint(bW2,2,1,"Progress:")

; Display initial progress bar
GProg(bW2,2,2,0)

; Loop through each window handle
for bL=0 to 9
DO
 ; Get the status
 bS=WStat(bL)

 ; Print the window handle #
 WPos(bW1,6,3+bL)
 WPut(bW1,bL+48)

 ; Print the handle status
 if bS=WON then
 WPrint(bW1,8,3+bL,"Used")
 else
 WPrint(bW1,8,3+bL,"Free")
 fi

 ; Update progress bar
 iV=((bL+1) MOD 10)*10
 if iV=0 then
 iV=100
 fi
 GProg(bW2,2,2,iV)

 ; Wait 1 second
 Wait(1)
OD

GAlert(" Press a key to continue. ")

; Close windows
WClose(bW2)
WClose(bW1)

46

RETURN

; -----------------------------------
; Proc: About()
; Desc: About Dialog
; -----------------------------------
PROC About()
BYTE bW1

; Show window
bW1=WOpen(1,6,38,14,WOFF)
WOrn(bW1,WPTOP,WPLFT,"About")
WPrint(bW1,WPCNT,1,"Demo Application")
WPrint(bW1,WPCNT,2,"Version 1.00")
WPrint(bW1,WPCNT,3,"(C) 2021 Wade Ripkowski")
WPrint(bW1,WPCNT,5,"Application to demonstrate")
WPrint(bW1,WPCNT,6,"the Action! library.")
WPrint(bW1,2,8, "V1-2021-Atari8: Action!")
WPrint(bW1,WPCNT,12," Ïë ")

; Wait for key
WaitKC()

; Close window
WClose(bW1)

RETURN

; -----------------------------------
; Proc: SubMenu()
; Desc: Sub menu routine
; -----------------------------------
PROC SubMenu()
BYTE bW1,bCh
CHAR ARRAY cM(37)

; Open window
bW1=WOpen(16,10,14,5,WOFF)
WOrn(bW1,WPTOP,WPLFT,"Sub-Menu")

; Build menu
SCopy(cM," Sub-Item 1 Sub-Item 2 Sub-Item 3 ")

; Do until exit
DO
 ; Display menu and get choice
 bCh=MenuV(bW1,1,1,WOFF,1,12,cM)

 ; Process choice
 if bCh=XESC then
 exit

 elseif bCh=1 then
 GAlert(" Sub-Item 1 selected. ")

 elseif bCh=2 then
 GAlert(" Sub-Item 2 selected. ")

 elseif bCh=3 then
 GAlert(" Sub-Item 3 selected. ")
 fi
OD

; Close window
WClose(bW1)

RETURN

; -----------------------------------
; Proc: Main()
; Desc: Main routine
; -----------------------------------
PROC Main()
BYTE bW1,bW2,bCh
CHAR ARRAY cM(71)

; Init Window System
WInit()

; Set Background
WBack(14)

47

; Open header window
bW1=WOpen(0,0,40,3,WON)
WPrint(bW1,WPCNT,1,"D E M O N S T R A T I O N")

; Open menu window
bW2=WOpen(12,7,16,9,WOFF)
WOrn(bW2,WPTOP,WPLFT,"Menu")

; Build menu
SCopy(cM," Input Form Progress Bar Sub-Menu About
Exit ")

; Do until exit
DO
 ; Display menu and get choice
 bCh=MenuV(bW2,1,2,WOFF,1,14,cM)

 ; Process choice
 if bCh=1 then
 FormInput()

 elseif bCh=2 then
 ProgTest()

 elseif bCh=3 then
 SubMenu()

 elseif bCh=4 then
 About()

 elseif bCh=XESC or bCh=5 then
 exit
 fi
OD

; Close windows
WClose(bW2)
WClose(bW1)

RETURN

48

	Table of Contents
	Overview
	Symbol Table Warning
	Code Size
	Requirements
	File Reference
	API Reference
	Usage Examples

